1、 高精度航天器在轨微振动分析与高维隔振器设计
高分辨率侦察卫星,激光通讯卫星等高精度航天器具有极高的精度和稳定度需求,对动量轮等星上各种扰动十分敏感,因此微振动抑制是保证其性能指标的关键技术。主要研究复杂航天器结构微振动分析、试验与微振动抑制技术,突破非线性连接结构高精度动力学建模难题,10-6g级别微振动驱动与测试技术,基于可变刚度结构设计的在轨微振动主动与半主动控制技术;基于非线性超结构的高精度航天器超低频微振动隔振技术,完成一体化的六自由度超低频隔振器的设计、分析和实验验证,实现0.1Hz固有频率和10-5g级别微振动隔振能力。
2、 液体航天发动机非线性结构振动分析
为保障载人登月、空间站重型构件运送及深空探测等重大航天战略活动的需求,新一代液体火箭发动机向大推力、高性能、高可靠性、可重复性的目标方向发展。极端恶劣的工作载荷环境使得液体火箭发动机振动剧烈,几乎所有大型液体火箭发动机在研制或服役过程均发生过振动疲劳导致的故障。针对液体发动机内部激励下的结构响应特性问题开展研究,建立包非线性连接结构的整机高精度动力学模型,揭示整机宽频动力学响应行为;针对涡轮泵转子的静态应力过载,动态失稳、流体激振、和涡轮颤振等问题进行理论与试验分析研究。
3、 高过载环境下微电子与微机电设备冲击与振动防护
制导武器发射和高速机动过程对陀螺与微电子系统抵抗大冲击、高过载、温度骤变等极端恶劣力学环境适应性提出了严苛要求,其中冲击载荷可达2万g以上。亟需开展极端力学环境下的 微电子与微机电设备冲击与振动防护,保证微系统在极端高过载环境下的存活和精度稳定。本研究对电子设备在冲击振动载荷下的响应进行数值仿真和试验分析,开展结构振动和冲击防护结构设计。
[1] Zhou, C., Fu, Q., Zhang, X. et al. Nonlinearity reduction in MEMS resonators based on design of H-shaped beams. Acta Mech, 2022, 233: 4903–4918.
[2] 周春燕, 胡博;梳齿结构与振动梁复合的硅微谐振器的非线性分析;必赢bwin线路检测中心学报,2022, 42(4): 390-397
[3] Xiaoying Hu, Chunyan Zhou, The effect of various damping on the isolation performance of quasi-zero-stiffness system; Mechanical Systems and Signal Processing; 2022, 171: 108944.
[4] Xiaoying Hu, Chunyan Zhou, Dynamic analysis and experiment of Quasi-zero-stiffness system with nonlinear hysteretic damping. Nonlinear Dynamics, 2022, 107:2153–2175.
[5] 胡晓滢,周春燕; 用于航天器微振动试验的高静刚度–低动刚度隔振器研究进展. 航天器环境工程, 2020, 37(4): 315-322.
[6] Xinxing Zhang, Chunyan Zhou, Dynamic analysis of spinning solar sails at deployment process. Chinese Journal of Aeronautics, 2017 30(5): 1719-1728.
[7] Chaofan Wang, Chunyan Zhou, Micro-vibration tests for honeycomb plates of the spacecraft, AIAA Journal, 2016, 54(11): 3652-3658.
[8] Enzhen Xing, Chunyan Zhou, Analysis of the bending behavior of a cable structure under microgravity. International Journal of Mechanical Sciences, 2016, 114:132-140.
[9] 刘健,周春燕.长厚比对正六边形铝蜂窝夹层板等效板模型动力学计算精度的影响. 复合材料学报, 2016, 33(8): 1838-1847.
[10] 周晓俊,周春燕,张新兴,胡海岩; 太阳帆自旋展开动力学地面模拟试验研究. 振动工程学报, 2015, 28(2):175-182.
[11] Z. Rao, C.Y. Zhou, Z.H. Deng, et al. Nonlinear Torsional Instabilities in a Two-stage Gear System with Flexible Intermediate Shaft. International Journal of Mechanical Sciences, 2014, 82:60–66.
[12] 霍倩,周春燕, 太阳帆航天器展开结构技术综述; 航天控制, 2013, 31(2):94-99.
[13] 周春燕,余同希,电子与光电产品设计中的结构动力学问题,力学与实践,2012:34(6):1-6.
[14] Chunyan Zhou, Dajun Wang, Song Shen, Jing Tang Xing; Nonlinear low frequency gravity waves in a water-filled cylindrical vessel subjected to high frequency excitations; Proceedings Of The Royal Society A-Mathematical Physical And Engineering Sciences, 2013. 469: 2153.
[15] Chunyan Zhou, Dajun,Wang, Nonlinear low frequency water waves in a cylindrical shell subjected to high frequency excitations – Part II: Theoretical analysis. Communications in Nonlinear Science and Numerical Simulation, 2014,19(4):1128–1141.
[16] Dajun Wang, Chunyan Zhou, Junbao Li, et al. Nonlinear low frequency water waves in a cylindrical shell subjected to high frequency excitations -Part I: experimental study. Communications in Nonlinear Science and Numerical Simulation, 2013,18:1710–1724.
[17] Zhou, C.Y., Yu, T.X., Analytical models for shock isolation of typical components in portable electronics. International Journal of Impact Engineering, 2009, 36(12):1377-84.
[18] Zhou, C.Y., Yu, T.X., Suhir, E., Design of shock table tests to mimic real-life drop conditions. IEEE Transactions on Components and Packaging Technologies,2009,32(4):832-7.
[19] Zhou C.Y., Yu, T.X., Lee, R.S.W. Drop/impact tests and analysis of typical portable electronic devices. International Journal of Mechanical Sciences, 2008,50(5):905-17.
[20] 周春燕,余同希,李世玮;便携式电子产品的跌落冲击响应-试验, 仿真和理论.力学进展, 2006 36 (2): 239-246.
[21] Dajun Wang, Chunyan Zhou, Jie Rong, Free and Forced Vibration of Repetitive Structures. International Journal of Solids and Structures, 2003, 40:5477–5494.